155 research outputs found

    Vertical hydraulic conductivity of a clayey-silt aquitard: accelerated fluid flow in a centrifuge permeameter compared with in situ conditions

    Get PDF
    This discussion paper is a preprint. It has been under review for the journal Hydrology and Earth System Sciences (HESS). The revised manuscript was not accepted.Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, extraction of fuels from strata such as coal beds, and confinement of waste within the earth. Characterizing low or negligible flow rates and transport of solutes can require impractically long periods of field or laboratory testing, but is necessary for evaluations over regional areas and over multi-decadal timescales. The current work reports a custom designed centrifuge permeameter (CP) system, which can provide relatively rapid and reliable hydraulic conductivity (K) measurement compared to column permeameter tests at standard gravity (1g). Linear fluid velocity through a low K porous sample is linearly related to g-level during a CP flight unless consolidation or geochemical reactions occur. The CP module is designed to fit within a standard 2 m diameter, geotechnical centrifuge with a capacity for sample dimensions of 30 to 100 mm diameter and 30 to 200 mm in length. At maximum RPM the resultant centrifugal force is equivalent to 550g at base of sample or a total stress of ~2 MPa. K is calculated by measuring influent and effluent volumes. A custom designed mounting system allows minimal disturbance of drill core samples and a centrifugal force that represents realistic in situ stress conditions is applied. Formation fluids were used as influent to limit any shrink-swell phenomena which may alter the resultant K value. Vertical hydraulic conductivity (Kv) results from CP testing of core from the sites in the same clayey silt formation varied (10−7 to 10−9 m s−1, n = 14) but higher than 1g column permeameter tests of adjacent core using deionized water (10−9 to 10−11 m s−1, n = 7). Results at one site were similar to in situ Kv values (3 × 10−9 m s−1) from pore pressure responses within a 30 m clayey sequence in a homogenous area of the formation. Kv sensitivity to sample heterogeneity was observed, and anomalous flow via preferential pathways could be readily identified. Results demonstrate the utility of centrifuge testing for measuring minimum K values that can contribute to assessments of geological formations at large scale. The importance of using realistic stress conditions and influent geochemistry during hydraulic testing is also demonstrated.Australian Research CouncilNational Water Commissio

    Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    Full text link
    Evaluating the possibility of leakage through low-permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from coal and other strata, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and realistic vertical hydraulic conductivity (Kv) measurements of aquitard cores using accelerated gravity can constrain and compliment larger-scale assessments of hydraulic connectivity. Steady-state fluid velocity through a low-K porous sample is linearly related to accelerated gravity (g level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. A CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions up to 100 mm diameter and 200 mm length, and a total stress of  ∼  2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink–swell phenomena, which may alter the permeability. Kv results from CP testing of minimally disturbed cores from three sites within a clayey-silt formation varied from 10−10 to 10−7  m s−1 (number of samples, n = 18). Additional tests were focussed on the Cattle Lane (CL) site, where Kv within the 99 % confidence interval (n = 9) was 1.1 × 10−9 to 2.0 × 10−9 m s−1. These Kv results were very similar to an independent in situ Kv method based on pore pressure propagation though the sequence. However, there was less certainty at two other core sites due to limited and variable Kv data. Blind standard 1 g column tests underestimated Kv compared to CP and in situ Kv data, possibly due to deionised water interactions with clay, and were more time-consuming than CP tests. Our Kv results were compared with the set-up of a flow model for the region, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. Reasonable assessments of leakage and solute transport through aquitards over multi-decadal timescales can be achieved by accelerated core testing together with complimentary hydrogeological monitoring, analysis, and modelling

    Two chemically similar stellar overdensities on opposite sides of the plane of the Galaxy

    Get PDF
    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface could have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.Comment: accepted for publication in Natur

    Multiple Deprivation, Severity and Latent Sub-Groups:Advantages of Factor Mixture Modelling for Analysing Material Deprivation

    Get PDF
    Material deprivation is represented in different forms and manifestations. Two individuals with the same deprivation score (i.e. number of deprivations), for instance, are likely to be unable to afford or access entirely or partially different sets of goods and services, while one individual may fail to purchase clothes and consumer durables and another one may lack access to healthcare and be deprived of adequate housing . As such, the number of possible patterns or combinations of multiple deprivation become increasingly complex for a higher number of indicators. Given this difficulty, there is interest in poverty research in understanding multiple deprivation, as this analysis might lead to the identification of meaningful population sub-groups that could be the subjects of specific policies. This article applies a factor mixture model (FMM) to a real dataset and discusses its conceptual and empirical advantages and disadvantages with respect to other methods that have been used in poverty research . The exercise suggests that FMM is based on more sensible assumptions (i.e. deprivation covary within each class), provides valuable information with which to understand multiple deprivation and is useful to understand severity of deprivation and the additive properties of deprivation indicators

    The definitions of three-dimensional landmarks on the human face: an interdisciplinary view

    Get PDF
    The analysis of shape is a key part of anatomical research and in the large majority of cases landmarks provide a standard starting point. However, while the technology of image capture has developed rapidly and in particular three-dimensional imaging is widely available, the de nitions of anatomical landmarks remain rooted in their two-dimensional origins. In the important case of the human face, standard de nitions often require careful orientation of the subject. This paper considers the de nitions of facial landmarks from an interdis- ciplinary perspective, including biological and clinical motivations, issues associated with imaging and subsequent analysis, and the mathematical definition of surface shape using differential geometry. This last perspective provides a route to de nitions of landmarks based on surface curvature, often making use of ridge and valley curves, which is genuinely three-dimensional and is independent of orientation. Specific definitions based on curvature are proposed. These are evaluated, along with traditional definitions, in a study which uses a hierarchical (random e ects) model to estimate the error variation which is present at several different levels within the image capture process. The estimates of variation at these different levels are of interest in their own right but, in addition, evidence is provided that variation is reduced at the observer level when the new landmark definitions are used

    Internet Image Viewer (iiV)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visualizing 3-dimensional (3-D) datasets is an important part of modern neuroimaging research. Many tools address this problem; however, they often fail to address specific needs and flexibility, such as the ability to work with different data formats, to control how and what data are displayed, to interact with values, and to undo mistakes.</p> <p>Results</p> <p>iiV, an interactive software program for displaying 3-D brain images, is described. This tool was programmed to solve basic problems in 3-D data visualization. It is written in Java so it is extensible, is platform independent, and can display images within web pages.</p> <p>iiV displays 3-D images as 2-dimensional (2-D) slices with each slice being an independent object with independent features such as location, zoom, colors, labels, etc. Feature manipulation becomes easier by having a full set of editing capabilities including the following: undo or redo changes; drag, copy, delete and paste objects; and save objects with their features to a file for future editing. It can read multiple standard positron emission tomography (PET) and magnetic resonance imaging (MRI) file formats like ECAT, ECAT7, ANALYZE, NIfTI-1 and DICOM. We present sample applications to illustrate some of the features and capabilities.</p> <p>Conclusion</p> <p>iiV is an image display tool with many useful features. It is highly extensible, platform independent, and web-compatible. This report summarizes its features and applications, while illustrating iiV's usefulness to the biomedical imaging community.</p

    Assessing the information desire of patients with advanced cancer by providing information with a decision aid, which is evaluated in a randomized trial: a study protocol

    Get PDF
    Contains fulltext : 95653.pdf (publisher's version ) (Open Access)BACKGROUND: There is a continuing debate on the desirability of informing patients with cancer and thereby involving them in treatment decisions. On the one hand, information uptake may be hampered, and additional stress could be inflicted by involving these patients. On the other hand, even patients with advanced cancer desire information on risks and prognosis. To settle the debate, a decision aid will be developed and presented to patients with advanced disease at the point of decision making. The aid is used to assess the amount of information desired. Factors related to information desire are explored, as well as the ability of the medical oncologist to judge the patient's information desire. The effects of the information on patient well-being are assessed by comparing the decision aid group with a usual care group. METHODS/DESIGN: This study is a randomized controlled trial of patients with advanced colorectal, breast, or ovarian cancer who have started treatment with first-line palliative chemotherapy. The trial will consist of 100 patients in the decision aid group and 70 patients in the usual care group. To collect complete data of 170 patients, 246 patients will be approached for the study. Patients will complete a baseline questionnaire on sociodemographic data, well-being measures, and psychological measures, believed to predict information desire. The medical oncologist will judge the patient's information desire. After disease progression is diagnosed, the medical oncologist offers the choice between second-line palliative chemotherapy plus best supportive care (BSC) and BSC alone. Randomization will take place to determine whether patients will receive usual care (n = 70) or usual care and the decision aid (n = 100). The aid offers information about the potential risks and benefits of both treatment options, in terms of adverse events, tumour response, and survival. Patients decide for each item whether they desire the information or not. Two follow-up questionnaires will evaluate the effect of the decision aid. DISCUSSION: This study attempts to settle the debate on the desirability of informing patients with cancer. In contrast to several earlier studies, we will actually deliver information on treatment options to patients at the point of decision making

    The relationship between fertility and lifespan in humans

    Get PDF
    Evolutionary theories of aging predict a trade-off between fertility and lifespan, where increased lifespan comes at the cost of reduced fertility. Support for this prediction has been obtained from various sources. However, which genes underlie this relationship is unknown. To assess it, we first analyzed the association of fertility with age at menarche and menopause, and with mortality in 3,575 married female participants of the Rotterdam Study. In addition, we conducted a candidate gene study where 1,664 single nucleotide polymorphisms (SNPs) in 25 candidate genes were analyzed in relation to number of children as a measure of fertility. SNPs that associated with fertility were analyzed for association with mortality. We observed no associations between fertility and age at menarche (p = 0.38) and menopause (p = 0.07). In contrast, fertility was associated with mortality. Women with two to three children had significantly lower mortality (hazard ratio (HR), 0.82; 95% confidence interval (95% CI), 0.69–0.97) compared to women with no children. No such benefit was observed for women with four or more children, who had a similar mortality risk (HR, 0.93; 95% CI, 0.76–1.13) as women with no children. The analysis of candidate genes revealed four genes that influence fertility after correction for multiple testing: CGB/LHB gene cluster (p = 0.0036), FSHR (p = 0.023), FST (p = 0.023), and INHBA (p = 0.021). However, none of the independent SNPs in these genes predicted mortality. In conclusion, women who bear two to three children live longer than those who bear none or many children, but this relationship was not mediated by the candidate genes analyzed in this study

    RGB-D Odometry and SLAM

    Full text link
    The emergence of modern RGB-D sensors had a significant impact in many application fields, including robotics, augmented reality (AR) and 3D scanning. They are low-cost, low-power and low-size alternatives to traditional range sensors such as LiDAR. Moreover, unlike RGB cameras, RGB-D sensors provide the additional depth information that removes the need of frame-by-frame triangulation for 3D scene reconstruction. These merits have made them very popular in mobile robotics and AR, where it is of great interest to estimate ego-motion and 3D scene structure. Such spatial understanding can enable robots to navigate autonomously without collisions and allow users to insert virtual entities consistent with the image stream. In this chapter, we review common formulations of odometry and Simultaneous Localization and Mapping (known by its acronym SLAM) using RGB-D stream input. The two topics are closely related, as the former aims to track the incremental camera motion with respect to a local map of the scene, and the latter to jointly estimate the camera trajectory and the global map with consistency. In both cases, the standard approaches minimize a cost function using nonlinear optimization techniques. This chapter consists of three main parts: In the first part, we introduce the basic concept of odometry and SLAM and motivate the use of RGB-D sensors. We also give mathematical preliminaries relevant to most odometry and SLAM algorithms. In the second part, we detail the three main components of SLAM systems: camera pose tracking, scene mapping and loop closing. For each component, we describe different approaches proposed in the literature. In the final part, we provide a brief discussion on advanced research topics with the references to the state-of-the-art.Comment: This is the pre-submission version of the manuscript that was later edited and published as a chapter in RGB-D Image Analysis and Processin
    • …
    corecore